

Fermi

Gamma-ray Space Telescope

Users Group Meeting 12 May 2010

LAT Onboard GRB Search

J. McEnery

LAT Onboard GRB Search

- Select events, onboard recon
 - Filter for gamma-like events
 - currently all events passing gamma-filter, but would like to look for additional background rejection.
 - Reconstruct onboard tracks
 - Combine 2-D projections to find 3-D tracks, select "best" track.
- Tier 1 Pretrigger
 - Search through sliding windows of fixed number of events for clusters in space and time.
 - Pass into tier 2 if cluster prob exceeds a predefined threshold
- Tier 2 Trigger (get here from Tier 1, or from GBM seed location)
 - Compile event list within Tier 1 or GBM seed location radius.
 - Declare a GRB if probability exceeds a predefined threshol
- Burst refinement
 - Localization obtained by iteratively calculated weighted mean location
 - Recalculate location at sequence of configurable count thresholds.
 - Alert notices sent out at fixed time intervals: 1, 2, 4, 8,16, 32, 600 seconds

LAT GRB Search - GBM Seeded Search

- GBM sends trigger location to LAT at 2 5 10 20 30 60 90 and 150s
- Ra, Dec from GBM trigger is used as the seed location for search (LAT search commences when GBM message arrives)
- Current config
 - Onboard threshold is TS>0, so always trigger immediately on detection of first LAT event within 10 deg of GBM location.
 - We apply a filter of TS>120 on the ground before sending GCN notice.
- Two reasons to change this
 - Enabling a delayed search, by not triggering on the first GBM message, we allow the possibility of triggering on later ones.
 - Allowing the LAT-only search to run without hindrance
 - Long LAT searches will not trigger if the GBM seeded window has already generated a spurious trigger and put the LAT in GRB mode.
- Optimize and test updated config using existing LAT-detected bursts
 - Now complete, new configuration will be uploaded within the next two weeks
 - Localizations range from 0.1 to 0.5 deg typically.

LAT GRB Search

Potential detections with new configuration:

•	GRB	2 s	5 s	10s	20s	30s	60s	90s	150s
•	080825	n	n	n	n	n	n	n	n
•	080916C	n	y						
•	081024B	y							
•	090227	n	n	n	n	n	n	n	n
•	090323	n	n	n	n	n	n	n	n
•	090328	n	n	n	n	n	n	n	n
•	090510*	y							
•	090626	n	n	n	n	n	n	n	n
•	090902	n	n	y	y				
•	090926	n	y						
•	091003	n	n	n	n	n	n	n	n
•	091031	n	n	n	n	n	n	n	n
•	100116*	n	n	n	n	n	n	n	n

Questions?

Test Statistics and Search Method

$$P_S = \sum_{i=1}^{M} |\log_{10}(p_{s_i})| = \sum_{i=1}^{M} \left| \log_{10}\left(\frac{1 - \cos(\theta_i)}{1 - \cos(\theta_m)}\right) \right|.$$

$$P_T = \sum_{i=1}^{M} \left| \log_{10}(p_{t_i}) \right| = \sum_{i=1}^{M} \left| \log_{10}(1 - e^{-r_t \Delta T_i}) \right|.$$

Tier 1

- Consider n events from entire sky (n = 40 or 80)
- For each event calculate P_S and P_T using all events within a 17 deg radius using the ra, dec of the first event as a seed position.
- P_S+P_T is roughly proportional to the number of events -> theta dependence
- If $P_s + \alpha P_T >$ Thres1 pass into Tier 2 (α =1)

Tier 2

- Use the location from Tier 1 as a seed location (or a GBM position)
- Calculate P_S and P_T for N_{prev} events (N_{prev} =200 for LAT and 500 for GBM seeds), add additional events to the P_S , P_T calculation until P_S + αP_T >Thres2, or 1 second has elapsed since entering tier 2 (this means that we can't set Thres2 low to determine the null distribution)